当前位置:魔方格数学二元一次方..>如图,矩形OABC中,B(x,y)满足2x-y=2x+2y=11,点M在x轴的负半轴..
题文
如图,矩形OABC中,B(x,y)满足
2x-y=2
x+2y=11
,点M在x轴的负半轴上,OM=2OA,P从A出发,沿射线AB方向以2单位/秒的速度运动,运动时间为t秒.
(1)求点M的坐标;
(2)设BP的长为y(y≠0),请用含有t的式子表示y;
(3)连接MC,CP和MP,当t为何值时,三角形CMP的面积为9?
题型:解答题难度:中档来源:不详
答案
(1)∵方程组
2x-y=2
x+2y=11
的解是
x=3
y=4

∴B点的坐标是(3,4),
∴OA=3,
∵OM=2OA,
∴OM=6,
∵点M在x轴的负半轴上,
∴点M的坐标是(-6,0);

(2)∵P从A出发,沿射线AB方向以2单位/秒的速度运动,运动时间为t秒,
∴AP=2t,
∵AB=4,
∴BP的长y=AB-AP=4-2t;

(3)∵S△CMP=S△COM+S梯形PAOC-S△AMP
=
1
2
×
6×4+
1
2
×(2t+4)×3-
1
2
×
2t×9
=18-6t,
∴18-6t=9,
t=
3
2

答:当t为
3
2
时,三角形CMP的面积为9.
据魔方格专家权威分析,试题“如图,矩形OABC中,B(x,y)满足2x-y=2x+2y=11,点M在x轴的负半轴..”主要考查你对  二元一次方程组的应用  等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问魔方格学习社区
二元一次方程组的应用
考点名称:二元一次方程组的应用
  • 二元一次方程组应用中常见的相等关系:
    1. 行程问题(匀速运动)
    基本关系:s=vt
    ①相遇问题(同时出发):
    确定行程过程中的位置路程
    相遇路程÷速度和=相遇时间
    相遇路程÷相遇时间= 速度和
    相遇问题(直线)
      甲的路程+乙的路程=总路程
    相遇问题(环形)
      甲的路程 +乙的路程=环形周长
    ②追及问题(同时出发):
    追及时间=路程差÷速度差  
    速度差=路程差÷追及时间  
    追及时间×速度差=路程差
    追及问题(直线)
    距离差=追者路程-被追者路程=速度差X追及时间
    追及问题(环形)
    快的路程-慢的路程=曲线的周长
    ③水中航行
    顺水行程=(船速+水速)×顺水时间  
    逆水行程=(船速-水速)×逆水时间  
    顺水速度=船速+水速  
    逆水速度=船速-水速  
    静水速度=(顺水速度+逆水速度)÷2  
    水速:(顺水速度-逆水速度)÷2

    2.配料问题:溶质=溶液×浓度
    溶液=溶质+溶剂

    3.增长率问题

    4.工程问题
    基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

    5.几何问题
    ①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
    ②注意语言与解析式的互化:
    如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
    又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
    ③注意从语言叙述中写出相等关系:
    如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
    ④注意单位换算:
    如,“小时”“分钟”的换算;s、v、t单位的一致等。
  • 二元一次方程组的应用:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。
    其具体步骤是:
    ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
    ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
    ⑶用含未知数的代数式表示相关的量。
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
    ⑸解方程及检验。
    ⑹答案。
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

以上内容为魔方格学习社区(www.mofangge.com)原创内容,未经允许不得转载!